Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
نویسندگان
چکیده
The reduction kinetics of Fe(III)citrate, Fe(III)NTA, Co(III)EDTA-, U(VI)O(2) (2+), Cr(VI)O(4) (2-), and Tc(VII)O(4) (-) were studied in cultures of dissimilatory metal reducing bacteria (DMRB): Shewanella alga strain BrY, Shewanella putrefaciens strain CN32, Shewanella oneidensis strain MR-1, and Geobacter metallireducens strain GS-15. Reduction rates were metal specific with the following rate trend: Fe(III)citrate > or = Fe(III)NTA > Co(III)EDTA- >> UO(2)(2+) > CrO(4)(2-) > TcO(4)(-), except for CrO(4) (2-) when H(2) was used as electron donor. The metal reduction rates were also electron donor dependent with faster rates observed for H(2) than lactate- for all Shewanella species despite higher initial lactate (10 mM) than H2 (0.48 mM). The bioreduction of CrO(4) (2-) was anomalously slower compared to the other metals with H(2) as an electron donor relative to lactate and reduction ceased before all the CrO(4)(2-) had been reduced. Transmission electron microscopic (TEM) and energy-dispersive spectroscopic (EDS) analyses performed on selected solids at experiment termination found precipitates of reduced U and Tc in association with the outer cell membrane and in the periplasm of the bacteria. The kinetic rates of metal reduction were correlated with the precipitation of reduced metal phases and their causal relationship discussed. The experimental rate data were well described by a Monod kinetic expression with respect to the electron acceptor for all metals except CrO(4)(2-), for which the Monod model had to be modified to account for incomplete reduction. However, the Monod models became statistically over-parameterized, resulting in large uncertainties of their parameters. A first-order approximation to the Monod model also effectively described the experimental results, but the rate coefficients exhibited far less uncertainty. The more precise rate coefficients of the first-order model provided a better means than the Monod parameters, to quantitatively compare the reduction rates between metals, electron donors, and DMRB species.
منابع مشابه
Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering.
The influence of Fe(III) starting material on the ability of magnetically recoverable biogenic magnetites produced by Geobacter sulfurreducens to retain metal oxyanion contaminants has been investigated. The reduction/removal of aqueous Cr(VI) was used to probe the reactivity of the biomagnetites. Nanomagnetites produced by the bacterial reduction of schwertmannite powder were more efficient at...
متن کاملReduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1.
Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO(2) and acetate but was unable ...
متن کاملSIMULTANEOUS REDUCTION OF U(VI) AND Fe(III):
8 Dissimilatory metal reducing bacteria (DMRB) are capable of reducing contaminants such as 9 Cr(VI), Se(VI) and U(VI) during respiration, a process that has a pronounced impact on the 10 mobility of these contaminants in surface and subsurface environments. DMRB can also 11 reduce Fe(III), most commonly associated with solid phase (hydr)oxide minerals such as 12 ferrihydrite, goethite, or hema...
متن کاملMetal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium, Shewanella sp. strain PV-4.
A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using l...
متن کاملReduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium
Dissimilatory metal-reducing bacteria (DMRB) can utilize Fe(III) associated with aqueous complexes or solid phases, such as oxide and oxyhydroxide minerals, as a terminal electron acceptor coupled to the oxidation of H2 or organic substrates. These bacteria are also capable of reducing other metal ions including Mn(IV), Cr(VI), and U(VI), a process that has a pronounced effect on their solubili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 80 6 شماره
صفحات -
تاریخ انتشار 2002